If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4y+4y^2-60=0
a = 4; b = -4; c = -60;
Δ = b2-4ac
Δ = -42-4·4·(-60)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{61}}{2*4}=\frac{4-4\sqrt{61}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{61}}{2*4}=\frac{4+4\sqrt{61}}{8} $
| 5w^2+18w+9=0 | | (3+Y)-(2x2)+6=9 | | 2x+48=2(2x) | | 29+3x-2+72=180 | | 6-3/4x=1/2x-4 | | 7c+6c=45 | | 0=14t-5t^2 | | x-15=2(x-53) | | -2(-p-6)=8p-12 | | (x+13)+(63)+(3x)=180 | | 9+5n=34 | | 16x+6=18x | | (63)+(3x)+(x+13)=180 | | -25+v=6v-(5-8v) | | (3x)+(18x)+(5x-2)=180 | | 7x+22=x+70 | | X+41+3x+9=180 | | 68+65+x+x=180 | | 81+3x-16+22=180 | | 3x+1-6x=4x+11-9x | | 4x-0.3=0.5×-6 | | 36=18x | | 6x+3=88 | | X+41+3x+9=~×∆ | | 6(x-5)=7x+3 | | 70=7x+35 | | 8h+130=210 | | 3z-5(3z+2)=2-5(-4-z) | | -7x-37=-7-2(-2x+4) | | 2x*2-32=0 | | 35=7x+35 | | 49=10+f/5 |